Catalytic Degradation of Benzene over Nanocatalysts containing Cerium and Manganese
نویسندگان
چکیده
A Ce-Mn composite oxide possessing a rod-like morphology (with a fixed molar ratio of Ce/Mn=3:7) was synthesized through a hydrothermal method. Mn ions were doped into a CeO2 framework to replace Ce ions, thereby increasing the concentration of oxygen vacancies. The formation energies of O vacancies for the Ce-Mn composite oxide were calculated by applying density functional theory (DFT). The data showed that it was easier to form an O vacancy in the composite. The catalytic behavior of the Ce-Mn composite oxide for benzene degradation was researched in detail, which exhibited a higher activity than the pure phases. Based on this, the Ce-Mn composite oxide was chosen as a supporter to load PdO nanoparticles. The activity was enhanced further compared with that of the supporter alone (for the supporter, the reaction rate R214 °C=0.68×10-4 mol gcat-1 s-1 and apparent activation energy Ea=12.75 kJ mol-1; for the supporting catalyst, R214 °C=1.46×10-4 mol gcat-1 s-1, Ea=10.91 kJ mol-1). The corresponding catalytic mechanism was studied through in situ Raman and FTIR spectroscopy, which indicated that the process of benzene oxidation was related to different types of oxygen species existing at the surface of the catalysts.
منابع مشابه
Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملCerium-Promoted PtRu/MWNTs As the Anode Catalyst for Methanol Electro-Oxidation
In the present study, PtRuCe/MWNTs nanocatalysts synthesized via polyol process technique are applied as anode electro-catalyst in methanol electro-oxidation reaction (MOR). To characterize the nanocatalysts, TEM, XRD, EDS and XPS are investigated. Cyclic voltammetry and choronoamperometry are used to evaluate the electro-catalytic activ...
متن کاملCatalytic Investigation of Aluminum Effects on Benzene Hydrogenation Selectivity over Nickel Supported HMS/HZSM-5 Composites
Ni/Al-HMS/HZSM-5 catalysts with varying amounts of Si/Al ratios were prepared via the impregnation method and evaluated for the hydrogenation of benzene at 130−190 °C. To study the catalyst characterization, various methods were used as X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, temperature-programmed des...
متن کامل